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Abstract

Large deformation behavior prior to and after bifurcation of thin W %lms on much thicker
Si substrates is investigated by recourse to coherent gradient sensing (CGS), which is an opti-
cal, full-%eld and vibration-insensitive technique. Since fringes obtained by CGS represent the
contours of gradient in out-of-plane displacement through appropriate optics, curvature of the
wafer can be obtained directly from the fringe number density. The measured curvatures in two
orthogonal principal directions, whose values agree reasonably with both analytical and numer-
ical predictions based on large deformation theory, clearly show that the equilibrium shape of
the wafer changes from a sphere to an ellipsoid when bifurcation occurs. In contrast to the
one-dimensional scanning method, which provides only a single normal (or direct) curvature
component, twist (or shear) as well as normal components of curvatures can be obtained as the
wafer is rotated with respect to its 3at zone. A classical Mohr’s circle representation is also
used to rationalize evolution of the twist curvatures. Finally, local curvature variations due to
non-uniform %lm stresses can be captured by full-%eld curvature maps using image processing
analysis.
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1. Introduction

The drive for miniaturization and more eAcient computer chip manufacturing has
motivated the microelectronic industry to fabricate increasingly large Si wafers on
which a greater number of dies could be fabricated. At the turn of the century, the
semiconductor industry is in the midst of retooling its wafer fabrication facilities to han-
dle 300-mm (12-in) diameter Si wafers, instead of the current standard, 200-mm wafers.
This increase in wafer diameter is also accompanied by a growing trend to introduce
more levels of metallization on the Si substrate which, in turn, results in a higher eBec-
tive membrane force in the multi-level, thin %lm arrangement on the substrate. Trends in
the fabrication of copper metal interconnects using the Damascene process also involve
the so-called chemical–mechanical polishing (CMP) method whereby planarization is
achieved between diBerent metallization steps. Finally, Si wafer substrate thicknesses
are becoming progressively smaller driven by packaging level needs. The collective
eBect of these trends in computer chip manufacturing is that while the propensity for
inducing large (or non-linear) deformation in the substrate is signi%cantly enhanced,
there is also growing need to ensure that wafer surfaces remain planar during diBerent
stages of manufacturing.
Dimensional analysis and computational modeling of large deformation indicate that

the propensity for bifurcation is proportional to the mismatch stress in the %lm (�f ), the
%lm thickness (hf ) and the square of the substrate diameter (D2s ), and inversely pro-
portional to h3s , where hs is the thickness of the substrate (Salamon and Masters, 1995;
Finot and Suresh, 1996; Finot et al., 1997; Freund, 2000). Another way of viewing
this is to observe that this propensity is directly proportional to two non-dimensional
ratios of lengths in addition to being proportional to the %lm stress. These are (hf =hs)
and (Ds=hs)2. The %rst is the thickness ratio of the %lm to the substrate while the
second is the wafer aspect ratio. These dimensional considerations for large defor-
mation also suggest that for %xed substrate diameter, %lm mismatch stress and %lm
thickness, there exists a critical thickness of the substrate above which curvature bifur-
cation is suppressed (Finot et al., 1997). Similarly, diBerent combinations of substrate
geometry and %lm membrane force, �f × hf , for which non-linear elastic deformation
is suppressed can also be identi%ed (Finot et al., 1997). When a wafer undergoes
large deformation, a biaxial curvature state develops and curvatures may no longer be
uniform over the entire wafer even with uniform %lm membrane force (Finot et al.,
1997; Freund, 2000). The details of the non-linear deformation states and the location
of bifurcation point strongly depend on gravity as well as arrangement of supporting
points (Giannakopoulos et al., 2001). In-plane shape of the %lm–substrate system also
in3uences the onset of instability. For example, rectangular shape leads to more gradual
transition from spherical to ellipsoidal curvature, whereas circles and squares lead to a
sharp bifurcation point (Finot and Suresh, 1996; Giannakopoulos et al., 2001).
Large deformation and bifurcation have been observed with diBerent curvature mea-

surement techniques. Finot et al. (1997) investigated thin W %lms on 150-mm (6-in)
and 200-mm (8-in) diameter Si wafers, the backsides of which were polished to in-
duce large deformation. Non-uniform curvature values were measured along the wafer
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diameter over a range of %lm membrane forces and substrate geometries with the laser
scanning method. An advantage of the laser scanning method lies in its good sensitivity
(Pan and Blech, 1984). However, the laser scanning technique provides point-wise
information and could potentially miss localized anomalies. Even if complete curvature
maps were generated by scanning, these scans would reveal only one of the three
independent components of the curvature tensor.
The grid re3ection technique, which projects a grid on the surface of wafers, and

then collects a re3ected image containing information on the out-of-plane displacement
of the surface, was also employed to study bifurcation behavior (Finot et al., 1997;
Giannakopoulos et al., 2001). The grid re3ection provides full-%eld measurement over
the entire wafer, and can capture clear transition between before and after bifurcation
from the distortion of grid shape. The multi-beam optical stress sensor technique (Floro
and Chason, 1996) is another optical technique which exploits the advantages of a
multi-beam output. However, this technique has not been used for measuring large
diameter wafers due to its limited %eld-of-view.
The coherent gradient sensing (CGS) technique (Rosakis et al., 1998), which ob-

tains gradient in the out-of-plane displacement of the wafer surface was also used for
investigation of non-linear deformation (Lee et al., 2001). Techniques based on optical
interferometry oBer much promise as a means for real-time, non-intrusive, full-%eld
measurement of curvature changes. However, standard interferometric techniques, such
as Twyman–Green interferometry (Born and Wolf, 1986), are sensitive to rigid body
motion (translation and/or rotation), and therefore are very vibration-sensitive.
Moreover, since these interferometric techniques measure the surface topography, two
successive diBerentiations of the experimental data are required to obtain curvature
components. Since the CGS technique measures gradient of displacements on the spec-
imen surface, this technique is vibration-insensitive and requires only one diBerentia-
tion of the experimental data to get curvature %eld. Lee et al. (2001) studied deviation
from linear prediction in Al %lms on 50-mm (2-in) diameter, ultra thin (105 �m)
Si wafers during thermal cycling using the CGS technique. Full-%eld observation of
the entire wafer was performed from diBerent wafer rotations, but only radial curva-
tures were calculated prior to and after bifurcation in comparison with %nite element
simulations. No attempt was made to visualize the twist curvature states during this
process.
In this work, non-linear deformation of back-side polished, 150-mm (6-in) Si wafers

coated with thin W %lms, which are purely elastic and elastically isotropic, were investi-
gated using the CGS technique. First, curvatures in two orthogonal, principal directions
were compared with analytical and numerical predictions in non-linear deformation
range. Because of CGS’ two-dimensional capability, twist (shear) curvature compo-
nents as well as both normal curvature components of the wafer were measured in the
oB-principal directions as a function of wafer rotation. A classical Mohr’s circle rep-
resentation was used to rationalize normal and twist curvature variation with rotation
angles. Finally, full-%eld curvature maps were constructed from CGS fringe patterns
using an image processing technique for non-uniform curvature %elds resulting from
local stress variation.
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2. Theoretical background

2.1. Curvature analysis based on large deformation theory

The curvature of a substrate coated with a thin %lm in an equibiaxial stress state
is linearly proportional to the membrane force, �f × hf , and is given by Stoney
(1909) as

�Stoney =
6
Es

�fhf
h2s

; (1)

where Es is the biaxial modulus (Es=[1−�s]) of the substrate. Since this relation is based
on small deformation theory assuming small rotations, there is no dependence on lateral
dimensions such as substrate diameter. When out-of-plane displacement is comparable
to substrate thickness, however, large deformation theory, which take moderate rotation
into account, should be used to capture actual curvature changes of the thin %lm–
substrate structure.
In order to evaluate quantitatively the signi%cance of large deformation, it is conve-

nient to introduce a stress parameter, A, de%ned (Finot et al., 1997) as

A= (�fhf ) ·
(
D2s
h3s

)
= �f ·

(
hf
hs

)
·
(
Ds
hs

)2
: (2)

The parameter A, which primarily controls the extent of large deformation, also provides
a geometrical interpretation in that it is proportional to the ratio of the out-of-plane
de3ection at the edge of the wafer to the wafer thickness. It is known that bifurcation
and geometrical instability of a circular wafer coated with a thin %lm occur at a
critical value of the stress parameter, Ac (Salamon and Masters, 1995; Finot and Suresh,
1996). For Ds=hs¿ 50, Ac depends only on the mechanical properties of the substrate,
and full-%eld %nite element analysis gives Ac = 680 GPa for a Si substrate (Finot
et al., 1997).
Fig. 1 shows the variation of curvature � at the center of the wafer from numeri-

cal simulation, normalized by the predicted small deformation curvature �Stoney, as a
function of the parameter A, normalized by its critical value Ac at bifurcation (Finot
et al., 1997). There are three distinct regimes which mark clear transitions in the evo-
lution of curvature. For low values of A=Ac, the stresses in the %lm promote only small
deformation with the result that the Stoney formula, Eq. (1), adequately describes the
evolution of the spherical curvature. Speci%cally when A=Ac6 0:2 (regime I), the cur-
vature of the wafer predicted from the %nite element analysis, �, deviates by less than
10% from the small deformation approximation. In regime I, the two direct curvature
components are equal and are uniform along the entire wafer. The curvature tensor is
isotropic and the twist vanishes in any reference axis.
When 0:26A=Ac6 1:0 (regime II), the radially symmetric shape of the %lm–substrate

system is retained. However, the wafer is no longer a sphere and it assumes a frisbee-like
shape. At the center of the wafer, the large deformation of the bilayer leads to a
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Fig. 1. Numerical predictions of principal curvatures at wafer center normalized by the small deformation
spherical curvature (�Stoney) as a function of the ratio A=Ac.

non-linear relationship between the curvature, �, and the membrane force, �f × hf .
Consequently, the numerical values of � deviate markedly from the Stoney prediction
(Stoney formula underestimates %lm stress). In addition, the curvature is not uniform
across the wafer and the radial variation of the curvature between the center of the
wafer and the edge is larger than 10%, even with uniform membrane force. This
variation was investigated experimentally by Finot et al. (1997) and Lee et al. (2001)
using two diBerent optical methods.
When the value of A approaches Ac, bifurcation occurs in the curvature of the

%lm–substrate system, and the layered solid undergoes an abrupt shape change from a
spherical geometry to an ellipsoidal shape. For A=Ac¿ 1 (regime III), this ellipsoidal
shape leads to a large curvature, �x, in one direction and a smaller curvature, �y, in
the in-plane orthogonal direction. As A=Ac increases, �y goes to zero and the wafer
consequently becomes cylindrical.
This curvature bifurcation phenomenon arises from the fact that the substrate can-

not deform into a spherical cap shape without stretching or compressing portions of
its midplane when deformation is not small. The substrate is very stiB in extension
compared to bending due to its plate-like shape. Therefore, this coupling between cur-
vature and stretching tend to stiBen the system response in comparison with behavior
in the linear range (regime II) (Freund, 2000; Freund and Suresh, 2003). Furthermore,
in contrast to spherical bending, ellipsoidal (or cylindrical) bending can occur with
only very limited midplane extension, which suggests that the system may begin a
transition at some critical stress parameter (Ac) from axially symmetric deformation,
as the only possible equilibrium shape, toward cylindrical bending deformation as an
alternate shape, which is energetically favorable (regime III) (Salamon and Masters,
1995; Freund and Suresh, 2003).
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2.2. Mohr’s circle representation of curvature

For displacements associated with the evolution of deformation at a point on an ini-
tially planar surface, the components of curvature can be generally non-linear functions
of the orthogonal displacement components at that point and their derivatives with re-
spect to the spatial coordinate (say x; y). Each of the curvature components depend on
the orientation of the coordinate system with reference to the surface. For deformed
surfaces where the squares of the slopes are small compared to unity (Rosakis et al.,
1998; Freund and Suresh, 2003), 1 the components of curvature can be de%ned in a
simpli%ed form as (Hyer, 1981; Rosakis et al., 1998)

�x =
92f
9x2 ; �y =

92f
9y2 ; �xy =

92f
9x9y ; �yx =

92f
9y9x ; (3)

where z = f(x; y) is the equation of the deformed surface topography induced by
the out-of-plane displacement. The %rst two equations de%ne two direct (or normal)
curvatures along two arbitrarily chosen, but mutually orthogonal directions, x and y.
They represent the rate of change in slope along the direction of travel per unit distance
(either x or y). The third and fourth equations de%ne the twist (or shear) curvatures.
These are de%ned as the rate of change in slope perpendicular to the direction of travel.
Because of the interchangeability of the diBerentiation operation, �xy = �yx and as a
result, curvature at a point is completely de%ned by the three independent measures
�x; �y and �xy.
The situation is analogous to a two dimensional state of plane stress in a thin body

subjected to external in-plane forces and undergoing planar deformations. The stress
state in such a case is de%ned by two direct in-plane stresses and an in-plane shear
stress, which are only surviving components of the symmetric stress tensor. Similar to
this, the curvature at a point on a surface is also a symmetric tensor whose components
are �x; �y and �xy with respect to an arbitrarily chosen cartesian coordinate system
(x; y; z), whose x–y plane serves as the reference plane from which the topography of
z = f(x; y) of the surface is measured.
The symmetry of the curvature tensor ensures the existence of at least two mutu-

ally perpendicular directions, de%ned at each point, along which one of the normal
curvatures is maximized while the other is minimized. Along these directions, called
principal directions, the twist curvatures vanish. These maximum and minimum curva-
tures are called the principal curvatures and will be denoted as �1 and �2, respectively.
Along two directions inclined at +45◦ and at −45◦ to the principal directions, the
twist curvatures are maximized while the two normal curvatures become equal and are
given by (�x + �y)=2. Each point on the curved surface features principal directions
that are inclined at diBerent directions to, the initially chosen, x–y axes. The principal
curvatures also vary from point to point. For spherically deformed surfaces, the curva-
ture tensor is isotropic and two normal curvatures are equal to each other and remain

1 It should be noted that strains are still small, even when second-order contribution of rotation to strain
can be as signi%cant as the %rst-order linear term in non-linear deformation.
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constant from point to point. In this case, any direction is a principal direction and the
shear or twist curvatures vanish everywhere.
In stress analysis, Mohr’s circle oBers a convenient method of visualizing the state

of plane stress and of extracting, from simple geometrical conditions, normal and shear
stresses and directions of principal stresses. Similarly, it will be shown in the present
discussion that Mohr’s circle can be constructed to determine diBerent components of
curvature at any point on a deformed surface and to visualize principal directions and
curvatures.
The Mohr’s circle for curvature is drawn with �x and �y plotted as variables along

the abscissa and �xy plotted along the ordinate, as shown in Fig. 2 (Hyer, 1981; Finot
and Suresh, 1996). The center of the Mohr’s circle, located along the abscissa at the
value, CMohr, and its radius, RMohr, are given, respectively, by

CMohr =
�x + �y

2
; RMohr =

{(
�x − �y

2

)2
+ �2xy

}1=2
: (4)

The principal curvatures for the surface, representing the maximum and minimum val-
ues of normal curvatures, are then simply given by

�1 = CMohr + RMohr ; �2 = CMohr − RMohr : (5)

The principal curvatures are found at directions � and �+ 90◦, where

tan 2�=
2�xy

�x − �y
: (6)

In other words, � is the angle through which the coordinate system should be rotated
counterclockwise about the z-axis (looking toward the x–y plane along the z-direction)
in order to align the x- and y-axis with the principal curvatures, �1 and �2. Mohr’s
circle can be used to determine which of these two axes is aligned with �1 or �2.

Fig. 2. Mohr’s circle representation of the shapes of curved surfaces (From Finot and Suresh, 1996).
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Whereas the twist curvature vanishes in the principal curvature directions, maximum
twist curvature �12 occurs at orientations �± 45◦ and is given by

�12 =
�1 − �2
2

= RMohr : (7)

DiBerent shapes of curved surfaces are easily visualized using the Mohr’s circle,
as shown in Fig. 2. For a 3at surface with no curvature, �x = �y = �xy = 0, and the
Mohr’s circle reduces to a point located at the origin of the �x=�y versus �xy plot. For
spherically curved surfaces, the Mohr’s circle is a point located along the abscissa. For
a cylindrical surface, either �x or �y vanishes and the Mohr’s circle has its left or right
extreme coincident with the origin of the curvature plot. For a saddle-shaped surface,
the Mohr’s circle encloses the origin.

3. Experiment and analysis

3.1. CGS Interferometry

Two Si wafers with 150-mm diameter, 675 �m initial thickness, and (100) surface
orientation were prepared for this study. In order to induce diBerent extents of large
deformation, the wafers were ground and polished from the back side. The eBect of
residual stress in the silicon due to grinding and polishing is known to be negligible
(Finot et al., 1997). The %lm–substrate geometries discussed here include a 325 �m
thick substrate with a 0:9 �m thick W %lm (wafer A) and a 415 �m thick substrate with
a 2:4 �m thick W %lm (wafer B). Curvatures were measured by CGS interferometry
for both wafers and compared with the previous experimental results of the same
specimens using the laser scanning and grid re3ection methods (Finot et al., 1997).
Numerical simulations were forced to match the measured curvatures (at the center
region) to extract membrane forces in the %lms from the %t (Finot et al., 1997).
Measured curvatures were plotted as a function of corresponding membrane forces
in the principal directions for comparison with theoretical prediction, which will be
discussed in the following section. CGS interferograms were also taken at every 45◦

with respect to the 3at zones of the wafers by rotating the entire wafers at a %xed
experimental condition for the purpose of investigating twist curvature evolution in the
oB-principal directions.
Fig. 3 shows a schematic of the CGS setup in re3ection (Rosakis et al., 1998;

Lee et al., 2001). A coherent, collimated laser beam is directed to the specularly
re3ecting specimen surface via a beam splitter. The beam re3ected from the specimen
then passes through the beam splitter and is then incident upon a pair of identical
high-density (40 lines=mm) gratings, G1 and G2, separated by a distance, � (40 mm
in this experiment). The diBracted orders from the two gratings are spatially %ltered
using a %ltering lens to form distinct diBraction spots on the %lter plane. An aperture
placed in this plane serves to %lter out the diBraction order of interest, which is then
imaged onto the photographic %lm plane. For the present purpose, either of the ±1
diBraction orders is of interest, as will be clear in the following discussion.
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Fig. 3. Schematic of the CGS set up in re3ection mode (From Rosakis et al., 1998).

Fig. 4. Schematic to illustrate the working principle of CGS (From Rosakis et al., 1998).

Fig. 4 illustrates the working principle of CGS in two dimensions (Rosakis et al.,
1998). Consider an optical wave front, S(x; y), re3ected from the specimen, which is
directly related to out-of-plane displacement, f(x; y), via the relation

S(x; y) = 2f(x; y) (8)

A wave front incident on the primary grating, G1, is diBracted into several wave
fronts denoted as E0; E1; E−1; E2; E−2, etc. For illustrative purposes, only E0; E1; E−1
are shown in Fig. 4. Each of these wave fronts are further diBracted by the sec-
ond grating, G2, to give rise to wave fronts denoted as E0;0; E0;1; E0;−1; : : : ; E1;0; E1;1;
E1;−1; : : : ; E−1;0; E−1;1; E−1;−1, etc. Again, only some of the diBracted wave fronts are
shown. Now various sets of parallel diBracted beams are combined using the %ltering
lens to form diBraction spots D0; D1; D−1; : : : in the %lter plane which coincides with
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the focal plane of the lens. An aperture is placed on the %lter plane to block all but the
D+1 diBraction spot. Subsequently, this diBraction spot is imaged onto the %lm plane.
Assume that the optical wave front incident on the %rst grating, G1, is approximately

planar and has a local phase diBerence given as S(x; y). Consider only two diBracted
wave fronts, E1;0 and E0;1. For E1;0, it is diBracted at the %rst grating and transmitted
without diBraction at the second. For E0;1, it is transmitted at the %rst grating and
is diBracted at the second. Since both wave fronts undergo one transmission and one
diBraction, these wave fronts should be coherent, i.e. in the same phase. The net eBect
of the two gratings is to produce a lateral shift, or shearing, of the incident wave front.
Thus the optical wave front along the diBracted beam E1;0, given by S(x; y + !), is
shifted by an amount ! along the y-direction as compared to the wave front along the
diBracted beam E0;1, given by S(x; y). The wave front shift is parallel to the principal
axis of the gratings, i.e. along y-direction, if the grating lines are oriented along the
x-direction as shown in Fig. 4.
Moreover, the magnitude of the shift is a function of the grating separation � and

the diBraction angle  as

!=Ltan  ; (9)

where the diBraction angle,  , is given by

 = arcsin(�=p); (10)

with � being the wavelength of light and p being the grating pitch. For a small angle
of diBraction, Eqs. (9) and (10) approximate to

! ≈ L ; (11)

 ≈ �
p
: (12)

Now consider the interference of the wave fronts. The conditions for constructive
interference may be expressed as

S(x; y + !)− S(x; y) = n(y)�; n(y) = 0; ±1;±2; : : : ; (13)

where n(y) represents the integer identifying fringes observed for shearing along the
y-direction. Dividing Eq. (13) by ! gives

S(x; y + !)− S(x; y)
!

=
n(y)�
!

; n(y) = 0; ±1;±2; : : : (14)

which, for suAciently small !, may be approximated by

9S(x; y)
9y =

n(y)�
!

; n(y) = 0;±1;±2; : : : : (15)
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Using Eqs. (11) and (12) in Eq. (15), we have

9S(x; y)
9y =

n(y)p
�

; n(y) = 0;±1;±2; : : : : (16)

Generalizing the result to include wave front shearing in either the x- or y-direction,
we have

9S(x; y)
9� =

n(�)p
�

; n(�) = 0;±1;±2; : : : ; (17)

where n� represents the fringes observed for shearing along the �-direction and �∈{x; y}.
Eq. (17) is the governing equation for interferograms formed using the technique
of CGS.
Symmetric curvature tensor, ���, where �; �∈{x; y}, has components �xx (or �x) and

�yy (or �y) termed as the normal curvatures and �xy termed as the twist curvatures as
described in detail in Section 2.2. The principal values of ��� are termed as the principal
curvatures. When |∇f|2�1, which is strictly valid even in large deformation regime
(Freund, 2000; Freund and Suresh, 2003), curvatures can be expressed combining
Eq. (8) as

��� ≈ 92f(x; y)
9�9� ≈ p

2�

(
9n(�)(x; y)

9�

)
; n(�) = 0;±1;±2; : : : ; (18)

where �∈{x; y}. Eq. (18) is the principal governing equation for determining curvature
tensor %elds, ���(x; y), where �; �∈{x; y}, from CGS interferograms. In this manner,
CGS interferograms provide a full-%eld technique for determining the instantaneous
value of the specimen curvature tensor at any point (x; y). Moreover, since CGS tech-
nique provides the out-of-plane gradient of the specimen surface topography, it is not
sensitive to rigid body motion such as vibration. In addition, only one diBerentiation
of the experimental data is required to obtain curvature since the CGS interferogram
is already diBerentiated once by optical means.

3.2. Image processing analysis

After obtaining two independent out-of-plane displacement gradient %elds by the CGS
technique, numerical diBerentiation of these %elds follows via a commercial MAT-
LAB program (MATLAB Version 6.1, 2001) to construct three full-%eld curvature
(MATLAB Version 6.1, 2001) to construct three full-%eld curvature component maps
(see Eq. (3)). Fig. 5(a) shows a slope interferogram (9f=9y, in this case) from a
52-mm diameter region near the center of a W %lm on a Si substrate. Change in fringe
density across the %eld of view encodes the curvature variation of the surface. Digi-
tal image processing techniques are used to obtain a map of fringe density from the
interferogram automatically. This is achieved as follows:
The %rst step is to represent dark regions of the fringes in Fig. 5(a) by a set of lines

of single pixel width, as shown in Fig. 5(b). A thresholding technique is subsequently
used to group the pixels comprising the interferogram into two subgroups, depending
on their brightness values. Through this thresholding technique, the dark regions in
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(a) (b)

(c) (d)

Fig. 5. Image processing procedure from a CGS interferogram to a full-%eld curvature map (a) an interfero-
gram of a 52-mm diameter region of the wafer using CGS method. (On the left side, there exist secondary,
spherical fringes on top of the main fringes. These fringes are artifacts from the laser beam, and are not
generated by wafer curvature.) (b) a binary image in which the dark fringes in (a) are represented by lines
with one pixel width. (c) a gray scale map of pitch (or spacing), determined by estimating vertical dis-
tances between adjacent lines in (b). (d) a curvature map on a logarithmic scale of the rectangular region in
(c) obtained using Eq. (18) (0:1 mm per pixel).

Fig. 5(a) take the value of one in a binary image, i.e. full brightness. A series of
morphological processing algorithms is then applied to obtain the %nal image shown
in Fig. 5(b).
A local pitch (or spacing) map is constructed from measuring the vertical spacing,

D, between adjacent fringes in Fig. 5(b). The brightness level at a point in Fig. 5(c)
is proportional to the spacing between a pair of fringe lines nearest to that point.
In particular, the larger the distance, the brighter the point. Therefore, the image in
Fig. 5(c) is a pitch map showing vertical spacing between adjacent fringes (in the y
direction) over the entire area.
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Subsequent multiplication of a smoothed, inverse pitch map, which is identical to
local fringe density, by p=2� (see Eq. (18)) provides a desired full-%eld curvature
map, as shown in Fig. 5(d). The curvature map enables us to obtain information on
the vertical, direct curvature component (�yy) across a wafer.
Similarly, a pitch map corresponding to the horizontal distance between fringes would

provide a map of the shear curvature component, �xy. In addition, if a horizontal slope
map, 9f=9x, is used as a starting point, an identical procedure would yield both the �xx

and the �yx maps. Recalling that �xy = �yx, it is evident that both slope interferograms
are needed to obtain three independent curvature components, �xx; �yy and �xy, which
fully determine the full curvature tensor and thus the full stress distribution on the thin
%lm structure deposited on the Si wafer surface.

4. Results and discussion

4.1. Average curvatures compared to large deformation theory

Fig. 6 shows CGS interferograms for both wafers in two orthogonal principal di-
rections. These principal directions were determined experimentally by rotating the
wafer about its center. For conditions in which the deformation is in the geometrically
non-linear range, the curvature state is no longer isotropic and diBerent curvatures may

(a) (b)

(c) (d)

Fig. 6. CGS interferograms of two orthogonal principal directions before bifurcation, (a) and (b), and after
bifurcation, (c) and (d), with view %eld diameter of 52-mm.
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exist at diBerent directions. Furthermore, variations of such curvature components may
develop from point to point (Finot et al., 1997; Freund, 2000). For the purpose of
comparison with large deformation theory, which assumes uniform curvature over the
entire region of interest, only central portions (52-mm in diameter), where components
of the curvature tensor are essentially constant over our %eld of view, of the 150-mm
(6-in) wafers are presented here. It is observed that, in general, fringes are oriented
horizontally (parallel to grating lines), which is an indication that the wafer has been
successfully aligned along and across the principal directions. Experimental noise due
to the incident laser beam is observed as fringe ripples in the outer regions, and
can be removed via subsequent image processing. It is worthwhile to note that from
Eqs. (8) and (17), the maximum slope of out-of-plane displacement is p=2� multiplied
by the number of fringes in the interferograms. From this calculation, |∇f|max is found
to be of the order of 0.02, Fig. 6(c), or less. As a result, the assumptions leading to
Eqs. (3) and (18) are satis%ed for all practical purposes since |∇f|2 is indeed a number
much less than unity. This is also consistent with the results of %nite element analysis
discussed in Freund (2000).
For wafer A, Fig. 6(a) and (b), fringe patterns are approximately the same in two

principal directions, which implies that the shape of this wafer remains axisymmetric
even in the non-linear deformation regime. For wafer B, however, the number of
fringes was found to increase markedly (compared to that of wafer A) in one principal
direction, Fig. 6(c), while average fringe density was found to be suppressed in the
other direction, Fig. 6(d). It can thus be observed that bifurcation had occurred in wafer
B, and that the equilibrium shape changes from a sphere into an ellipsoid. It should
be stated here that wafer B features a W %lm whose thickness is about 2.5 times that
of wafer A while deposition conditions were identical.
Average curvatures over the region shown in Fig. 6 are calculated in Eq. (18) from

average fringe number density, i.e. total fringe number in the interferogram divided
by the diameter of the view %eld. Variations in local fringe density, which are related
to localized curvature, will be discussed in the following section. Average principal
curvatures from the CGS measurements are compared to predictions from large de-
formation theory (Freund, 2000) in Fig. 7. In order to superimpose the experimental
points on this %gure, the technique used byFinot et al. (1997) was adopted. First, the
principal curvatures, in both directions, were obtained by CGS. Then the correspond-
ing stress states were inferred through a numerical model of the exact %lm–substrate
system, which was forced to adopt the same curvatures as measured by CGS. Previ-
ous experimental data for the same samples, using laser scanning and grid re3ection
methods (Finot et al., 1997) are shown for comparison. Curvature and membrane force
(or mismatch strain) are normalized into two non-dimensional values de%ned below
(Freund, 2000):

P� =
�D2

16hs
; (19)

P�m =
3�fhfD2

8Esh3s
; (20)
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Fig. 7. Comparison of measured normalized curvature versus normalized mismatch strain for Si wafers with
W %lms to analytical prediction based on large deformation by Freund (2000). The %lled circles correspond
to curvature measurement made by Finot et al. (1997), and the other window symbols denote experimental
results from this work.

where Es is 180 GPa for a (100) Si wafer. Agreement between the theory and the exper-
imental measurements is reasonably good for both pre- and post-bifurcation curvatures
in the central portion of Si wafers with W %lm deposits. What is also noteworthy is the
relatively good agreement between the various experimental techniques. It is perhaps
fortuitous that around the bifurcation point, the curvature radii are of the order of tens
of meters. As a result, the relatively low sensitivity of the grid re3ection technique did
not compromise the comparison. The observed discrepancy may be due to non-uniform
curvature evolution, which is not accounted for in theoretical predictions.
In addition to principal curvatures, normal and twist curvature components can

be identi%ed at any arbitrary rotation angle � with respect to principal directions
from CGS interferograms. Fig. 8 shows the Mohr’s circle representation for pre- and
post-bifurcation. Prior to bifurcation (wafer A), a spherical shape is retained with es-
sentially the same principal curvatures in two orthogonal directions. Therefore, Mohr’s
circle is reduced to a point located along the abscissa. After bifurcation (wafer B),
however, one principal curvature is larger than that of the pre-bifurcated wafer, and
the other is smaller. For an ellipsoidally curved surface, Mohr’s circle is located with
its center on the abscissa and its radius de%ned by Eq. (4). When a wafer is rotated
counter-clockwise by � from the principal direction, twist as well as normal curvature
components are found at a location on the circle inclined at 2� counter-clockwise from
the abscissa. The angle �, shown in Fig. 8, is de%ned by the ratio of twist component
to normal curvature as

�= arctan
(
�xy

��

)
; (21)

where � is either x or y.
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Fig. 8. Schematic of Mohr’s circles of spherical wafer shape (before bifurcation) and ellipsoidal shape (after
bifurcation) to illustrate curvature components and characteristic angle, �, as rotated by � from principal
direction.
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Fig. 9. Schematic of CGS interferrogram as rotated by � from principal direction (a) measurement of normal
and twist curvature components (b) calculation of characteristic angle, �′.

A schematic of the fringe pattern in an oB-principal direction is shown in
Fig. 9(a). Fringes are no longer parallel to grating lines (horizontal in this experi-
ment), which means there are twist as well as normal components of the curvature
tensor. The normal component, �y, is measured from the average fringe density along
the y-direction. In the same way, average fringe density along the x-direction deter-
mines the twist component, �xy. It can be seen that the orientation of the fringes with
respect to the grating lines represents the ratio of twist to normal curvature. As shown in
Fig. 9(b), the angle �′ is de%ned in the same form as � in Eq. (21). Therefore, pre-
dictions of �y (or �x), �xy and � at a rotation angle of � from Mohr’s circle based
on two principal curvature values, �1 and �2, can be compared to measurements from
CGS interferograms.
Fig. 10 shows CGS interferograms at �=±45◦, where maximum twist curvatures are

expected. When the post-bifurcated wafer (wafer B) is rotated by 45◦ counter-clockwise
(�=+45◦), Fig. 10(a), fringes are oriented with a positive slope from left to right. In
contrast, when the wafer is rotated by 45o clockwise (�=−45◦), Fig. 10(b), the fringe
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(a) (b)

Fig. 10. CGS interferograms (a) � = +45◦ (b) � =−45◦.

Table 1
Comparison between Mohr’s circle predictions and CGS interferogram results on normal, twist curvature
components and characteristic angle, �, at ±45◦ oB principal directions

From Fig. 6 From Fig. 10
and Mohr’s circle

� = +45◦ � =−45◦

�x or �y (1/m) 0.24 0.27 0.23
�xy (1/m) 0.13 0.13 0.16
� (◦) 28 26 33

pattern is distorted in the same general manner but in the opposite sense (negative
slope), indicating the onset of substrate twist of opposite sign.
Predictions of �y (or �x); �xy and � at � = ±45◦ from Mohr’s circle and mea-

surements of corresponding values from CGS interferograms are listed in Table 1. The
%rst column is obtained by %rst recording the principal curvatures from the CGS in-
terferograms of Fig. 6(c) and (d). The Mohr’s circle is subsequently used to infer the
curvature components at the orientations where maximum twist curvatures occur. The
values presented in the second column are directly obtained by measuring curvatures
from the interferograms of Fig. 10. In this case the wafer was rotated at ±45◦ to
the principal directions. Agreement between these two ways of evaluating curvature
components for these in-plane orientations is very good. Such a quantitative agreement
is a direct experimental con%rmation of the fact that curvature is a tensorial entity
which transforms in accordance to the rules described in Section 2.2. In addition, it
shows that CGS interferometry is capable of measuring all three curvature components
irrespective of the initial choice of wafer orientation and placement.
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Fig. 11. A series of images showing the correlation of CGS fringe patterns with points on Mohr’s circle for
curvatures.

Curvature states are summarized on the Mohr’s circle with corresponding CGS
interferograms as a function of rotation angle for pre- and post-bifurcated wafers in
Fig. 11. Prior to bifurcation, all the fringe patterns are essentially independent of ro-
tation angle. This is not surprising since the curvature tensor is essentially isotropic.
In contrast, after bifurcation, fringe number increases in one principal direction and
decreases in the other for fringes oriented parallel to the grating lines. At � = ±45◦,
where the maximum twist curvatures occur, fringes have inclination to some degree in
opposite sense depending on rotating direction. The numbers and inclination of fringes
in these states can be predicted from Mohr’s circle; From Eq. (21), fringes at �=±45◦
are approximately parallel to the dotted lines in the Mohr’s circle shown in Fig. 11.

4.2. Localized curvatures in a full-6eld map

Fig. 12 shows the center portion (25-mm× 25-mm) of a CGS interferogram for the
post-bifurcated wafer in the principal direction with smaller curvature (a) and the cor-
responding full %eld curvature (�y) map on a logarithmic scale, which was obtained
using image processing analysis (b). In Fig. 12(a) the pitch (or spacing) between
adjacent fringes varies from one region to another. Through the image processing tech-
niques outlined in Section 3.2, localized curvatures are calculated based on Eq. (18). In
Fig. 12(b), while the region of high fringe density indicates curvature values approxi-
mately double the average value (0:10 m−1), the region of low fringe density indicates
curvature of less than half this average value. Even in a uniform %lm, non-uniform cur-
vatures are observed due to variation of intrinsic and/or processing-induced stresses, as
well as initial wafer topography. This kind of full-%eld map enables us to locate area of
curvature concentration resulting from such events as initial bare wafer non-planarity,
rapid stress gradient, and stress concentration and to identify consequent failure.
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Fig. 12. Construction of full %eld curvature map (a) CGS interferogram of central portion of wafer (0.1
mm/pixel) (b) corresponding full %eld curvature contour on logarithm scale (the numbers are converted to
linear scale in the index).

5. Conclusions

On the basis of experiments and analyses carried out in the present work for large de-
formation and bifurcation behavior of W %lms on Si substrates, the following conclusions
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are made:

• The coherent gradient sensing (CGS) technique, which is an optical, full %eld and
vibration-insensitive experimental technique, was used to study large deformation
behavior by measuring gradients of out-of-plane displacement of deformed surfaces
in the form of surface slope fringes. Since fringe patterns contain information of the
wafer surface gradients, all three independent curvature components can be calculated
by taking derivatives of the gradient %elds. These gradient %elds are constructed
from two CGS interferograms that correspond to two arbitrarily chosen, but mutually
orthogonal directions.

• The measured curvatures in two orthogonal principal directions, the values of which
agree reasonably well with analytical predictions based on large deformation theory,
clearly show that the equilibrium shape of the wafer changes from a sphere to an
ellipsoid upon bifurcation.

• In contrast to the one-dimensional scanning method, which provides only a normal
curvature component along the direction of scan, twist (shear) as well as both nor-
mal components of curvatures can be obtained by CGS for wafers positioned at an
arbitrarily chosen wafer orientation. A classical Mohr’s circle representation can be
used to identify principal directions and rationalize the evolution of twist curvatures
for oB-principal orientations.

• Local curvature variation due to non-uniform %lm stresses can be captured by a
full-%eld curvature map obtained through numerical diBerentiation of fringe patterns
using image processing analysis.
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